Frequency-Based Error Back-Propagation in a Cortical Network
نویسندگان
چکیده
This paper presents a biologically plausible mechanism of back-propagating network output error to previous layers of processing in a particular multi-layer neural network. This mechanism is used in a network that is designed to mimic familiarity discrimination as performed by the perirhinal cortex of the temporal lobe. In the algorithm, the error of the network during an initial classification period regulates the frequency of neuronal activity in a succeeding memorising period via an inhibitory circuit, such that the frequency in this memorising period is proportional to the error. Synaptic weight modifications are made according to activity-dependent Hebbian rules, such as may be used in the brain. The magnitude of the modification depends on the frequency of the activity. Hence, the magnitude of weight modification is proportional to the network error.
منابع مشابه
Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملExperimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam
Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملA generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کامل